Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Life-history trade-offs can mediate population declines following perturbations, and early reproduction should be favoured when adult survival is impacted more than juvenile survival. In Tasmanian devils (Sarcophilus harrisii), following the emergence of a transmissible cancer that caused steep population declines, females started to breed precocially (i.e. at age 1 instead of 2 years old). Here, using 18 years of mark–recapture data from a site where the disease was present (Freycinet Peninsula, Tasmania, Australia), we tested whether: (i) the probability of 1-yea-old females breeding continued to increase over time; (ii) there was a relationship between body size and breeding success for either 1-year-old or adult females; and (iii) there was inbreeding depression in breeding success for either age category. We show that the probability of 1-year-old females breeding did not increase between 2003 and 2021, and that the proportion of precocially breeding females remains at around 40%. We also show that there was no effect of skeletal body size on the probability of breeding, but heavier females were always more likely to breed. Finally, we found no evidence for inbreeding depression in breeding success. We discuss our results in the context of possible constraints by way of limitations to growth in the offspring of precocially breeding females.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Abstract Herein, we rebut the critique of Patton et al. (2020), entitled, “No evidence that a transmissible cancer has shifted from emergence to endemism”, by Stammnitz et al. (2024). First and foremost, the authors do not conduct any phylogenetic or epidemiological analyses to rebut the inferences from the main results of the Patton et al. (2020) article, rendering the title of their rebuttal without evidence or merit. Additionally, Stammnitz et al. (2024) present a phylogenetic tree based on only 32 copy number variants (not typically used in phylogenetic analyses and evolve in a completely different way than DNA sequences) to “rebut” our tree that was inferred from 436.1 kb of sequence data and nearly two orders of magnitude more parsimony-informative sites (2520 SNPs). As such it is not surprising that their phylogeny did not have a similar branching pattern to ours, given that support for each branch of their tree was weak and the essentially formed a polytomy. That is, one could rotate their resulting tree in any direction and by nature, it would not match ours. While the authors are correct that we used suboptimal filtering of our raw whole genome sequencing data, re-analyses of the data with 30X coverage, as suggested, resulted in a mutation rate similar to that reported in Stammnitz et al. (2024). Most importantly, when we re-analyzed our data, as well as Stammnitz et al.’s own data, the results of the Patton et al. (2020) article are supported with both datasets. That is, the effective transmission rate of DFTD has transitioned over time to approach one, suggesting endemism; and, the spread of DFTD is rapid and omnidirectional despite the observed east-to-west wave of spread. Overall, Stammnitz et al. (2024) not only fail to provide evidence to contradict the findings of Patton et al. (2020), but rather help support the results with their own data.more » « lessFree, publicly-accessible full text available July 16, 2026
-
Ashby, Ben; Wolf, Jason (Ed.)Abstract Emerging infectious diseases threaten natural populations, and data-driven modeling is critical for predicting population dynamics. Despite the importance of integrating ecology and evolution in models of host–pathogen dynamics, there are few wild populations for which long-term ecological datasets have been coupled with genome-scale data. Tasmanian devil (Sarcophilus harrisii) populations have declined range wide due to devil facial tumor disease (DFTD), a fatal transmissible cancer. Although early ecological models predicted imminent devil extinction, diseased devil populations persist at low densities, and recent ecological models predict long-term devil persistence. Substantial evidence supports the evolution of both devils and DFTD, suggesting coevolution may also influence continued devil persistence. Thus, we developed an individual-based, eco-evolutionary model of devil–DFTD coevolution parameterized with nearly 2 decades of devil demography, DFTD epidemiology, and genome-wide association studies. We characterized potential devil–DFTD coevolutionary outcomes and predicted the effects of coevolution on devil persistence and devil–DFTD coexistence. We found a high probability of devil persistence over 50 devil generations (100 years) and a higher likelihood of devil–DFTD coexistence, with greater devil recovery than predicted by previous ecological models. These novel results add to growing evidence for long-term devil persistence and highlight the importance of eco-evolutionary modeling for emerging infectious diseases.more » « less
-
Apex consumers are declining worldwide. While the effects of apex predator declines on ecosystems are widely documented, the cascading effects of apex scavenger declines are poorly understood. We evaluated whether disease‐induced declines of an apex scavenger, the Tasmanian devil (Sarcophilus harrisii), increased carrion use by invertebrate scavengers. We manipulated devil access to 36 carcasses across a gradient of devil density from east to west Tasmania and measured carcass use by invertebrates. We found the amount of carcass removed within 5 days was 3.58 times lower at sites with the lowest devil densities. Adult carrion beetle (Ptomaphila lacrymosa) and blow fly (Calliphoridae) larvae abundances were two times higher at open‐access carcasses at low‐density sites than at intermediate‐ and high‐density sites. Adult beetles persisted for 10 days at the low‐density site but declined after 5 days when devils had access to carcasses in intermediate‐ and high‐density sites. Blow fly larvae abundance was not affected by devils in the low‐density site but decreased with devil access in intermediate‐ and high‐density sites. Our results suggest that apex scavenger declines may increase invertebrate scavenger abundance and their contribution to carrion decomposition, with potential cascading effects on nutrient cycling and ecosystems.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Global apex scavenger declines strongly alter food web dynamics, but studies rarely test whether trophic downgrading impacts ecosystem functions. Here, we leverage a unique, disease‐induced gradient in Tasmanian devil (Sarcophilus harrisi) population densities to assess feedbacks between carcass persistence, subordinate scavenger guilds, and biogeochemical cycling. We further explored interkingdom and seasonal interactions by manipulating carcass access and replicating experiments in warmer, drier summer versus cooler, wetter winter periods. We show Tasmanian devil declines significantly extend carcass persistence and increase the flux of carcass‐derived nutrients belowground (e.g., by 18–134‐fold for ammonium). Greater nutrient availability reduces soil microbiome diversity by up to 26%, increasing the relative abundance of putative zoonotic pathogens. Nutrient subsidies also shift microbial communities toward faster‐growing taxa that invest less energy in resource acquisition, with implications for soil carbon sequestration. Rates of carcass decomposition were reduced in the winter, dampening soil biogeochemical responses and interkingdom competition. Notably, while less efficient scavenger guilds clearly facilitate carcass consumption, they were not able to fill the functional role of apex scavengers. Our study illustrates how trophic downgrading effects can ripple across all levels of ecological organization.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract Forest disturbance has well-characterized effects on soil microbial communities in tropical and northern hemisphere ecosystems, but little is known regarding effects of disturbance in temperate forests of the southern hemisphere. To address this question, we collected soils from intact and degraded Eucalyptus forests along an east–west transect across Tasmania, Australia, and characterized prokaryotic and fungal communities using amplicon sequencing. Forest degradation altered soil microbial community composition and function, with consistent patterns across soil horizons and regions of Tasmania. Responses of prokaryotic communities included decreased relative abundance of Acidobacteriota, nitrifying archaea, and methane-oxidizing prokaryotes in the degraded forest sites, while fungal responses included decreased relative abundance of some saprotrophic taxa (e.g. litter saprotrophs). Forest degradation also reduced network connectivity in prokaryotic communities and increased the importance of dispersal limitation in assembling both prokaryotic and fungal communities, suggesting recolonization dynamics drive microbial composition following disturbance. Further, changes in microbial functional groups reflected changes in soil chemical properties—reductions in nitrifying microorganisms corresponded with reduced NO3-N pools in the degraded soils. Overall, our results show that soil microbiota are highly responsive to forest degradation in eucalypt forests and demonstrate that microbial responses to degradation will drive changes in key forest ecosystem functions.more » « less
-
Coevolution is common and frequently governs host–pathogen interaction outcomes. Phenotypes underlying these interactions often manifest as the combined products of the genomes of interacting species, yet traditional quantitative trait mapping approaches ignore these intergenomic interactions. Devil facial tumor disease (DFTD), an infectious cancer afflicting Tasmanian devils (Sarcophilus harrisii), has decimated devil populations due to universal host susceptibility and a fatality rate approaching 100%. Here, we used a recently developed joint genome-wide association study (i.e., co-GWAS) approach, 15 y of mark-recapture data, and 960 genomes to identify intergenomic signatures of coevolution between devils and DFTD. Using a traditional GWA approach, we found that both devil and DFTD genomes explained a substantial proportion of variance in how quickly susceptible devils became infected, although genomic architectures differed across devils and DFTD; the devil genome had fewer loci of large effect whereas the DFTD genome had a more polygenic architecture. Using a co-GWA approach, devil–DFTD intergenomic interactions explained ~3× more variation in how quickly susceptible devils became infected than either genome alone, and the top genotype-by-genotype interactions were significantly enriched for cancer genes and signatures of selection. A devil regulatory mutation was associated with differential expression of a candidate cancer gene and showed putative allele matching effects with two DFTD coding sequence variants. Our results highlight the need to account for intergenomic interactions when investigating host–pathogen (co)evolution and emphasize the importance of such interactions when considering devil management strategies.more » « less
-
Abstract Tasmanian eucalypt forests are among the most carbon‐dense in the world, but projected climate change could destabilize this critical carbon sink. While the impact of abiotic factors on forest ecosystem carbon dynamics have received considerable attention, biotic factors such as the input of animal scat are less understood. Tasmanian devils (Sarcophilus harrisii)—an osteophageous scavenger that can ingest and solubilize nutrients locked in bone material—may subsidize plant and microbial productivity by concentrating bioavailable nutrients (e.g., nitrogen and phosphorus) in scat latrines. However, dramatic declines in devil population densities, driven by the spread of a transmissible cancer, may have underappreciated consequences for soil organic carbon (SOC) storage and forest productivity by altering nutrient cycling. Here, we fuse experimental data and modeling to quantify and predict future changes to forest productivity and SOC under various climate and scat‐quality futures. We find that devil scat significantly increases concentrations of nitrogen, ammonium, phosphorus, and phosphate in the soil and shifts soil microbial communities toward those dominated byr‐selected (e.g., fast‐growing) phyla. Further, under expected increases in temperature and changes in precipitation, devil scat inputs are projected to increase above‐ and below‐ground net primary productivity and microbial biomass carbon through 2100. In contrast, when devil scat is replaced by lower‐quality scat (e.g., from non‐osteophageous scavengers and herbivores), forest carbon pools are likely to increase more slowly, or in some cases, decline. Together, our results suggest often overlooked biotic factors will interact with climate change to drive current and future carbon pool dynamics in Tasmanian forests.more » « less
An official website of the United States government
